Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Expansion of allogeneic NK cells with efficient antibody-dependent cell cytotoxicity against multiple tumors.

Sanchez-Martinez D, Allende-Vega N, Orecchioni S, Talarico G, Cornillon A, Vo DN, Rene C, Lu ZY, Krzywinska E, Anel A, Galvez EM, Pardo J, Robert B, Martineau P, Hicheri Y, Bertolini F, Cartron G, Villalba M.

Theranostics. 2018 Jun 14;8(14):3856-3869. doi: 10.7150/thno.25149. eCollection 2018.

2.

Mitochondrial Complex I activity signals antioxidant response through ERK5.

Khan AUH, Allende-Vega N, Gitenay D, Garaude J, Vo DN, Belkhala S, Gerbal-Chaloin S, Gondeau C, Daujat-Chavanieu M, Delettre C, Orecchioni S, Talarico G, Bertolini F, Anel A, Cuezva JM, Enriquez JA, Cartron G, Lecellier CH, Hernandez J, Villalba M.

Sci Rep. 2018 May 9;8(1):7420. doi: 10.1038/s41598-018-23884-4.

3.

NK cell activation and recovery of NK cell subsets in lymphoma patients after obinutuzumab and lenalidomide treatment.

Vo DN, Alexia C, Allende-Vega N, Morschhauser F, Houot R, Menard C, Tarte K, Cartron G, Villalba M.

Oncoimmunology. 2017 Dec 20;7(4):e1409322. doi: 10.1080/2162402X.2017.1409322. eCollection 2018.

4.

Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status.

Belkahla S, Haq Khan AU, Gitenay D, Alexia C, Gondeau C, Vo DN, Orecchioni S, Talarico G, Bertolini F, Cartron G, Hernandez J, Daujat-Chavanieu M, Allende-Vega N, Gonzalez MV.

Oncotarget. 2017 Dec 14;9(1):1114-1129. doi: 10.18632/oncotarget.23305. eCollection 2018 Jan 2.

5.

The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway.

Khan AUH, Allende-Vega N, Gitenay D, Gerbal-Chaloin S, Gondeau C, Vo DN, Belkahla S, Orecchioni S, Talarico G, Bertolini F, Bozic M, Valdivielso JM, Bejjani F, Jariel I, Lopez-Mejia IC, Fajas L, Lecellier CH, Hernandez J, Daujat M, Villalba M.

Sci Rep. 2017 Sep 6;7(1):10654. doi: 10.1038/s41598-017-10339-5.

6.

CD45 Isoform Profile Identifies Natural Killer (NK) Subsets with Differential Activity.

Krzywinska E, Cornillon A, Allende-Vega N, Vo DN, Rene C, Lu ZY, Pasero C, Olive D, Fegueux N, Ceballos P, Hicheri Y, Sobecki M, Rossi JF, Cartron G, Villalba M.

PLoS One. 2016 Apr 21;11(4):e0150434. doi: 10.1371/journal.pone.0150434. eCollection 2016.

7.

Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS) Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS) Production.

Khan AUH, Rathore MG, Allende-Vega N, Vo DN, Belkhala S, Orecchioni S, Talarico G, Bertolini F, Cartron G, Lecellier CH, Villalba M.

EBioMedicine. 2015 Nov 26;3:43-53. doi: 10.1016/j.ebiom.2015.11.045. eCollection 2016 Jan.

8.

Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers.

Krzywinska E, Allende-Vega N, Cornillon A, Vo DN, Cayrefourcq L, Panabieres C, Vilches C, D├ęchanet-Merville J, Hicheri Y, Rossi JF, Cartron G, Villalba M.

EBioMedicine. 2015 Aug 13;2(10):1364-76. doi: 10.1016/j.ebiom.2015.08.021. eCollection 2015 Oct.

9.

The presence of wild type p53 in hematological cancers improves the efficacy of combinational therapy targeting metabolism.

Allende-Vega N, Krzywinska E, Orecchioni S, Lopez-Royuela N, Reggiani F, Talarico G, Rossi JF, Rossignol R, Hicheri Y, Cartron G, Bertolini F, Villalba M.

Oncotarget. 2015 Aug 7;6(22):19228-45.

10.

Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells.

Lopez-Royuela N, Rathore MG, Allende-Vega N, Annicotte JS, Fajas L, Ramachandran B, Gulick T, Villalba M.

Int J Biochem Cell Biol. 2014 Aug;53:253-61. doi: 10.1016/j.biocel.2014.05.026. Epub 2014 May 28.

PMID:
24880091
11.

Chemical metabolic inhibitors for the treatment of blood-borne cancers.

Villalba M, Lopez-Royuela N, Krzywinska E, Rathore MG, Hipskind RA, Haouas H, Allende-Vega N.

Anticancer Agents Med Chem. 2014 Feb;14(2):223-32. Review.

12.

From tumor cell metabolism to tumor immune escape.

Villalba M, Rathore MG, Lopez-Royuela N, Krzywinska E, Garaude J, Allende-Vega N.

Int J Biochem Cell Biol. 2013 Jan;45(1):106-13. doi: 10.1016/j.biocel.2012.04.024. Epub 2012 May 5. Review.

13.

Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy.

Allende-Vega N, Saville MK.

Semin Cancer Biol. 2010 Feb;20(1):29-39. doi: 10.1016/j.semcancer.2009.10.004. Epub 2009 Nov 6. Review.

PMID:
19897040
14.

FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53.

Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, Milne D, Fuller-Pace F, Meek D.

FEBS Lett. 2009 Feb 18;583(4):621-6. doi: 10.1016/j.febslet.2009.01.009. Epub 2009 Jan 21.

15.

Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53.

Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK.

J Biol Chem. 2009 Feb 20;284(8):5030-41. doi: 10.1074/jbc.M805871200. Epub 2008 Dec 19.

16.

Transcription factor TAFII250 phosphorylates the acidic domain of Mdm2 through recruitment of protein kinase CK2.

Allende-Vega N, McKenzie L, Meek D.

Mol Cell Biochem. 2008 Sep;316(1-2):99-106. doi: 10.1007/s11010-008-9816-3. Epub 2008 Jun 12.

PMID:
18548200
17.

The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2.

Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK.

EMBO J. 2007 Feb 21;26(4):976-86. Epub 2007 Feb 8.

18.

Phosphorylation of the acidic domain of Mdm2 by protein kinase CK2.

Allende-Vega N, Dias S, Milne D, Meek D.

Mol Cell Biochem. 2005 Jun;274(1-2):85-90.

PMID:
16335531

Supplemental Content

Loading ...
Support Center