Send to

Choose Destination

See 1 citation found by title matching your search:

Front Neurosci. 2012 Jan 24;6:4. doi: 10.3389/fnins.2012.00004. eCollection 2012.

A Role for the Cannabinoid 1 Receptor in Neuronal Differentiation of Adult Spinal Cord Progenitors in vitro is Revealed through Pharmacological Inhibition and Genetic Deletion.

Author information

Department of Anesthesiology, New York University Langone Medical Center New York, NY, USA.


In contrast to the adult brain, the adult spinal cord is a non-neurogenic environment. Understanding how to manipulate the spinal cord environment to promote the formation of new neurons is an attractive therapeutic strategy for spinal cord injury and disease. The cannabinoid 1 receptor (CB1R) has been implicated as a modulator of neural progenitor cell proliferation and fate specification in the brain; however, no evidence exists for modulation of adult spinal cord progenitor cells. Using adult rat spinal cord primary cultures, we demonstrated that CB1R antagonism with AM251 significantly decreased the number of Nestin(+) cells, and increased the number of βIII tubulin(+) and DCX(+) cells, indicative of neuronal differentiation. AM251's effect was blocked by co-application of the CB1R agonists, WIN 55, 212-2, or ACEA. Consistent with our hypothesis, cultures, and spinal cord slices derived from CB1R knock-out (CB1-/-) mice had significantly higher levels of DCX(+) cells compared to those derived from wild type (CB1+/+) mice, indicative of enhanced neuronal differentiation in CB1-/- spinal cords. Moreover, AM251 promoted neuronal differentiation in CB1+/+, but not in CB1-/- cultures. Since CB1R modulates synaptic transmission, and synaptic transmission has been shown to influence progenitor cell fate, we evaluated whether AM251-induced neuronal differentiation was affected by chronic inactivity. Either the presence of the voltage-dependent sodium channel blocker tetrodotoxin (TTX), or the removal of mature neurons, inhibited the AM251-induced increase in DCX(+) cells. In summary, antagonism or absence of CB1R promotes neuronal differentiation in adult spinal cords, and this action appears to require TTX-sensitive neuronal activity. Our data suggest that the previously detected elevated levels of endocannabinoids in the injured adult spinal cord could contribute to the non-neurogenic environment and CB1R antagonists could potentially be used to enhance replacement of damaged neurons.


CB1R; adult spinal cord cultures; neuronal differentiation

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center