Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue

Plant Cell Physiol. 1997 Apr;38(4):404-12. doi: 10.1093/oxfordjournals.pcp.a029183.

Abstract

The ER luminal binding protein, BiP, has been linked to prolamine protein body formation in rice. To obtain further information on the possible role of this chaperone in protein body formation we have cloned and sequenced a BiP cDNA homolog from rice endosperm. The rice sequence is very similar to the maize BiP exhibiting 92% nucleotide identity and 96% deduced amino acid sequence identity in the coding region. Substantial amino acid sequence homology exists between rice BiP and BiP homologs from several other plant and animal species including long stretches of conservation through the amino-terminal ATPase domain. Considerable variation, however, is observed within the putative carboxy-terminal peptide-binding domain between the plant and nonplant BiP sequences. A single hand of approximately 2.4 kb was visible when RNA gel blots of total RNA purified from seed tissue were probed with radiolabeled rice BiP cDNA. This band increased in intensity during seed development up to 10 days after flowering, and then decreased gradually until seed maturity. Protein gel blots indicated that BiP polypeptide accumulation parallels that of the prolamine polypeptides throughout seed development. Immunocytochemical analysis demonstrated that BiP is localized in a non-stochastic fashion in the endoplasmic reticulum membrane complex of developing endosperm cells. It is abundant on the periphery of the protein inclusion body but not in the central portion of the protein body or in the cisternal ER membranes connecting the protein bodies. These data support a model which proposes that BiP associates with the newly synthesized prolamine polypeptide to facilitate its folding and assembly into a protein inclusion body, and is then recycled.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Arabidopsis Proteins
  • Base Sequence
  • Carrier Proteins / genetics*
  • Cloning, Molecular
  • DNA, Plant
  • Gene Expression
  • Heat-Shock Proteins / genetics*
  • Molecular Sequence Data
  • Oryza / genetics*
  • Oryza / ultrastructure
  • Plant Proteins / genetics*
  • RNA, Messenger / analysis
  • Sequence Homology, Amino Acid

Substances

  • Arabidopsis Proteins
  • Carrier Proteins
  • DNA, Plant
  • Heat-Shock Proteins
  • Plant Proteins
  • RNA, Messenger
  • BIP protein, Arabidopsis

Associated data

  • GENBANK/AF006825