BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis

Biochim Biophys Acta Mol Basis Dis. 2021 Apr 1;1867(4):166061. doi: 10.1016/j.bbadis.2020.166061. Epub 2020 Dec 29.

Abstract

PLX7904 and PLX8394 are novel BRAFV600E inhibitors-BRAFi that are designed to evade the paradoxical MAPK activation, a trait for the name "paradox breakers"-PB. Current FDA approved inhibitors (Vemurafenib, Dabrafenib, Encorafenib) although improved progression-free survival of mtBRAF melanoma patients suffer from this treatment related side effect. mtBRAF Colorectal Cancer (CRC) is resistant to the approved BRAF inhibitors, although combinatorial treatment co-targeting BRAF and EGFR/MEK is offering a promising prospect. In an effort to explore the potential of the novel BRAF inhibitors-PB to impede CRC cell proliferation, they were tested on RKO, HT29 and Colo-205 cells, bearing the BRAFV600E mutation. This study shows that the BRAF paradox breakers PLX7904 and PLX8394 cause a more prolonged MAPK pathway inhibition and achieve a stronger blockage of proliferation and reduced viability than PLX4720, the sister compound of Vemurafenib. In some treatment conditions, cells can undergo apoptosis. Genomic analysis on the more resistant RKO cells treated with PLX7904, PLX8394 and PLX4720 showed similar gene expression pattern, but the alterations imposed by the PB were more intense. Bioinformatic analysis resulted in a short list of genes representing potential master regulators of the cellular response to BRAF inhibitors' treatments. From our results, it is clear that the BRAF paradox breakers present a notable differential regulation of major pathways, like MAPK signalling, apoptosis, cell cycle, or developmental signalling pathways. Combinatorial treatments of BRAFi with Mcl-1 and Notch modulators show a better effect than mono-treatments. Additional pathways could be further exploited in novel efficient combinatorial treatment protocols with BRAFi.

Keywords: BRAF paradox breakers; Bioinformatics; Colorectal cancer; Combinatorial treatments; Mcl-1 inhibitors; Notch modulators; RNA-sequencing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / metabolism
  • Heterocyclic Compounds, 2-Ring / pharmacology*
  • Humans
  • Indoles / pharmacology*
  • MAP Kinase Signaling System / drug effects
  • Point Mutation / drug effects
  • Protein Kinase Inhibitors / pharmacology*
  • Proto-Oncogene Proteins B-raf / antagonists & inhibitors*
  • Proto-Oncogene Proteins B-raf / genetics
  • Proto-Oncogene Proteins B-raf / metabolism
  • Sulfonamides / pharmacology*

Substances

  • Antineoplastic Agents
  • Heterocyclic Compounds, 2-Ring
  • Indoles
  • PLX 4720
  • PLX7904
  • PLX8394
  • Protein Kinase Inhibitors
  • Sulfonamides
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf