Inter-ligand intramolecular through-space anisotropic shielding in a series of manganese carbonyl phosphorous compounds

Dalton Trans. 2019 Oct 7;48(39):14926-14935. doi: 10.1039/c9dt03100f.

Abstract

Eight novel manganese carbonyl complexes of the type [Mn(bpy-tBu)(CO)3PR3]+ (bpy-tBu = 4,4'-di-tert-butyl-2,2'-bipyridine; R = Cy, nBu, Me, p-tol, Ph, p-F-Ph, OEt, and OMe), have been synthesized and characterized by 1H NMR, FTIR, UV/Vis, HRMS and CV. X-ray crystallographic structures of [Mn(bpy-tBu)(CO)3(PCy3)]+ and [Mn(bpy-tBu)(CO)3(PPh3)]+ were obtained. The short Mn-P bond length allows for close proximity of the bipyridine ligand and the phosphine R groups, resulting in strong anisotropic shielding of certain bipyridine protons by aryl R groups (reordering the bipyridine 1H NMR pattern in the most extreme case). Electrochemical analysis of the compound series reveals that while each is a competent precatalyst for electrochemical carbon dioxide reduction (to carbon monoxide), the lability of the PR3 ligand results in similar catalytic performance amongst the series.