Format

Send to

Choose Destination
J Immunol Methods. 2019 Jul 4. pii: S0022-1759(19)30109-7. doi: 10.1016/j.jim.2019.07.001. [Epub ahead of print]

Evaluation of antibodies for western blot analysis of frataxin protein isoforms.

Author information

1
Penn/CHOP Center of Excellence in Friedreich's Ataxia, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
2
Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
3
Penn/CHOP Center of Excellence in Friedreich's Ataxia, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
4
Penn/CHOP Center of Excellence in Friedreich's Ataxia, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
5
Penn/CHOP Center of Excellence in Friedreich's Ataxia, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: ianblair@upenn.edu.

Abstract

Frataxin is the protein that is down-regulated in Friedreich ataxia (FRDA), an autosomal recessive genetic disease caused by an intronic GAA repeat expansion in intron-1 of the FXN gene. The GAA repeats result in epigenetic silencing of the FXN gene and reduced expression of the cytosolic full-length frataxin (1-210) protein. Full length frataxin translocates to the mitochondria, leading to formation of mature frataxin (81-210) formed by cleavage of the mitochondrial targeting sequence at K-80 of the full-length protein. There are currently no approved treatments for FRDA, although experimental approaches involving up-regulation or replacement of mature frataxin protein through numerous approaches are being tested. Many of the pre-clinical studies of these experimental approaches are conducted in mouse and monkey models as well as in human cell lines. Consequently, well-validated antibodies are required for use in western blot analysis to determine whether levels of various forms of frataxin have been increased. Here we examined the specificity of five commercially available anti-frataxin antibodies and determined whether they detect mature frataxin in mouse heart tissue. Four protein standards of monkey, human, and mouse frataxin as well as mouse heart tissue were examined using polyacrylamide gel electrophoresis (PAGE) in combination with western blot analysis. One antibody failed to detect any of the frataxin standards or endogenous frataxin in mouse heart tissue. Three of the antibodies detected a protein in mouse heart tissue that ran slightly faster on PAGE (at 23.4 kDa) to that predicted for full-length frataxin (23.9 kDa). One antibody detected all four frataxin standards as well as endogenous mouse mature frataxin in mouse tissue. Significantly, this antibody, which will be useful for monitoring mature frataxin levels in monkey, human, and mouse tissues, did not detect a protein in mouse heart tissue at 23.4 kDa. Therefore, antibodies detecting the immunoreactive protein at 23.4 kDa could be misleading when testing for the up-regulation of frataxin in animal models.

KEYWORDS:

Frataxin; Friedreich's ataxia; Gene therapy; Mature frataxin; Mitochondrial processing peptidase; Mitochondrial protein

PMID:
31279523
DOI:
10.1016/j.jim.2019.07.001
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center