Format

Send to

Choose Destination
Front Physiol. 2019 May 3;10:529. doi: 10.3389/fphys.2019.00529. eCollection 2019.

The Transcriptome of the Salivary Glands of Amblyomma aureolatum Reveals the Antimicrobial Peptide Microplusin as an Important Factor for the Tick Protection Against Rickettsia rickettsii Infection.

Author information

1
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
2
Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States.
3
Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil.
4
Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
5
Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.

Abstract

The salivary glands (SG) of ixodid ticks play a pivotal role in blood feeding, producing both the cement and the saliva. The cement is an adhesive substance that helps the attachment of the tick to the host skin, while the saliva contains a rich mixture of antihemostatic, anti-inflammatory, and immunomodulatory substances that allow ticks to properly acquire the blood meal. The tick saliva is also a vehicle used by several pathogens to be transmitted to the vertebrate host, including various bacterial species from the genus Rickettsia. Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes the severe Rocky Mountain spotted fever. In Brazil, the dog yellow tick Amblyomma aureolatum is a vector of R. rickettsii. In the current study, the effects of an experimental infection with R. rickettsii on the global gene expression profile of A. aureolatum SG was determined by next-generation RNA sequencing. A total of 260 coding sequences (CDSs) were modulated by infection, among which 161 were upregulated and 99 were downregulated. Regarding CDSs in the immunity category, we highlight one sequence encoding one microplusin-like antimicrobial peptide (AMP) (Ambaur-69859). AMPs are important effectors of the arthropod immune system, which lack the adaptive response of the immune system of vertebrates. The expression of microplusin was confirmed to be significantly upregulated in the SG as well as in the midgut (MG) of infected A. aureolatum by a quantitative polymerase chain reaction preceded by reverse transcription. The knockdown of the microplusin expression by RNA interference caused a significant increase in the prevalence of infected ticks in relation to the control. In addition, a higher rickettsial load of one order of magnitude was recorded in both the MG and SG of ticks that received microplusin-specific dsRNA. No effect of microplusin knockdown was observed on the R. rickettsii transmission to rabbits. Moreover, no significant differences in tick engorgement and oviposition were recorded in ticks that received dsMicroplusin, demonstrating that microplusin knockdown has no effect on tick fitness. Further studies must be performed to determine the mechanism of action of this AMP against R. rickettsii.

KEYWORDS:

RNAi; antimicrobial peptide; immune; microplusin; salivary glands; spotted fever; tick-rickettsiae interaction; transcriptome

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center