Histone deacetylase inhibitors suppress aggressiveness of head and neck squamous cell carcinoma via histone acetylation-independent blockade of the EGFR-Arf1 axis

J Exp Clin Cancer Res. 2019 Feb 18;38(1):84. doi: 10.1186/s13046-019-1080-8.

Abstract

Background: A promising arsenal of histone deacetylase (HDAC)-targeted treatment has emerged in the past decade, as the abnormal targeting or retention of HDACs to DNA regulatory regions often occurs in many cancers. Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive malignancies worldwide associated with poor overall survival in late-stage patients. HDAC inhibitors have great potential to treat this devastating disease; however, few has been studied regarding the beneficial role of HDAC inhibition in anti-HNSCC therapy and the underlying molecular mechanisms remain elusive.

Methods: Cell migration and invasion were examined by wound closure and Transwell assays. Protein levels and interactions were assessed by Western blotting and immunoprecipitation. HDAC activity was measured with the fluorometric HDAC Activity Assay. Phospho-receptor tyrosine kinase (RTK) profiling was determined by the Proteome Profiler Human Phospho-RTK Array.

Results: ADP-ribosylation factor 1 (Arf1), a small GTPase coordinating vesicle-mediated intracellular trafficking, can be inactivated by HDAC inhibitors through histone acetylation-independent degradation of epidermal growth factor receptor (EGFR) in HNSCC cells. Mechanistically, high levels of Arf1 activity are maintained by binding to phosphorylated EGFR which is localized on HNSCC cell plasma membrane. Decreased EGFR phosphorylation is associated with reduced EGFR protein levels in the presence of TSA, which inactivates Arf1 and eventually inhibits invasion in HNSCC cells.

Conclusions: Our insights explore the critical role of EGFR-Arf1 complex in driving HNSCC progression, and demonstrate the selective action of HDAC inhibitors on this specific axis for suppressing HNSCC invasion. This novel finding represents the first example of modulating the EGFR-Arf1 complex in HNSCC by small molecule agents.

Keywords: Anticancer; Arf1; EGFR; HDAC; HNSCC; Invasion.

MeSH terms

  • ADP-Ribosylation Factor 1 / drug effects*
  • ADP-Ribosylation Factor 1 / metabolism
  • Animals
  • Cell Line, Tumor
  • ErbB Receptors / drug effects
  • ErbB Receptors / metabolism
  • Head and Neck Neoplasms / metabolism
  • Head and Neck Neoplasms / pathology*
  • Histone Deacetylase Inhibitors / pharmacology*
  • Histones / metabolism
  • Humans
  • Mice
  • Signal Transduction / drug effects
  • Squamous Cell Carcinoma of Head and Neck / metabolism
  • Squamous Cell Carcinoma of Head and Neck / pathology*

Substances

  • Histone Deacetylase Inhibitors
  • Histones
  • EGFR protein, human
  • ErbB Receptors
  • ADP-Ribosylation Factor 1