Send to

Choose Destination
PLoS One. 2019 Jan 30;14(1):e0210792. doi: 10.1371/journal.pone.0210792. eCollection 2019.

Genomic content of a novel yeast species Hanseniaspora gamundiae sp. nov. from fungal stromata (Cyttaria) associated with a unique fermented beverage in Andean Patagonia, Argentina.

Author information

Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia.
Laboratorio de Microbiología Aplicada y Biotecnología, Instituto de Investigaciones en Biodiversidad y Medio-ambiente, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina.
Laboratorio de Bioprocesos, Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Neuquén, Argentina.
Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.


A novel yeast species was isolated from the sugar-rich stromata of Cyttaria hariotii collected from two different Nothofagus tree species in the Andean forests of Patagonia, Argentina. Phylogenetic analyses of the concatenated sequence of the rRNA gene sequences and the protein-coding genes for actin and translational elongation factor-1α indicated that the novel species belongs to the genus Hanseniaspora. De novo genome assembly of the strain CRUB 1928T yielded a 10.2-Mbp genome assembly predicted to encode 4452 protein-coding genes. The genome sequence data were compared to the genomes of other Hanseniaspora species using three different methods, an alignment-free distance measure, Kr, and two model-based estimations of DNA-DNA homology values, of which all provided indicative values to delineate species of Hanseniaspora. Given its potential role in a rare indigenous alcoholic beverage in which yeasts ferment sugars extracted from the stromata of Cytarria sp., we searched for the genes that may suggest adaptation of novel Hanseniaspora species to fermenting communities. The SSU1-like gene encoding a sulfite efflux pump, which, among Hanseniaspora, is present only in close relatives to the new species, was detected and analyzed, suggesting that this gene might be one factor that characterizes this novel species. We also discuss several candidate genes that likely underlie the physiological traits used for traditional taxonomic identification. Based on these results, a novel yeast species with the name Hanseniaspora gamundiae sp. nov. is proposed with CRUB 1928T (ex-types: ZIM 2545T = NRRL Y-63793T = PYCC 7262T; MycoBank number MB 824091) as the type strain. Furthermore, we propose the transfer of the Kloeckera species, K. hatyaiensis, K. lindneri and K. taiwanica to the genus Hanseniaspora as Hanseniaspora hatyaiensis comb. nov. (MB 828569), Hanseniaspora lindneri comb. nov. (MB 828566) and Hanseniaspora taiwanica comb. nov. (MB 828567).

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center