Send to

Choose Destination
J Mol Neurosci. 2018 Nov;66(3):383-389. doi: 10.1007/s12031-018-1184-1. Epub 2018 Oct 3.

OIP5 Expression Sensitize Glioblastoma Cells to Lomustine Treatment.

Author information

Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil.
Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil.
Department of Pharmaceutical Science, Universidade Federal de São Paulo, Diadema, Brazil.
Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil.
Laboratório de Biologia Molecular do Câncer, UNIFESP, Rua Pedro de Toledo, 669 - 11° andar, São Paulo, SP, 04039-032, Brazil.


Glioblastoma (GBM) is an incurable disease ranked among the deadliest solid cancers worldwide. A better understanding on the molecular aspects of this malignancy could contribute to the development of new treatment strategies and help to improve survival rates. Previously, our group had shown that GBM patients expressing the cancer/testis antigen Opa Interacting Protein 5 (OIP5) present a longer survival period than the OIP5-negative group. The main goal of this study was to evaluate the OIP5 contribution to GBM tumorigenesis and assess the role of OIP5 in GBM cell response to lomustine, an alkylating agent used in the treatment of this malignancy. So, the effect of OIP5 knockdown was evaluated in A172 and T98G GBM cell lines. Our results demonstrated that downregulation of the OIP5 stimulates glioma cell viability and inhibits cell death-induced necrosis prompted by lomustine. In conclusion, our data shows that OIP5 expression in GBM cells seems to be able to enhance lomustine cytotoxic effects, reinforcing that this gene is a potential therapeutic target and putative molecular biomarker for treatment response in GBM.


Drug resistance; Glioblastoma; Lomustine; OIP5

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center