Send to

Choose Destination
Biomater Sci. 2018 Aug 21;6(9):2448-2459. doi: 10.1039/c8bm00671g.

Osseointegration of ultrafine-grained titanium with a hydrophilic nano-patterned surface: an in vivo examination in miniature pigs.

Author information

Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.


Advances in biomaterials science and implant surface technology have made dental implants more predictable and implant therapy more attractive to patients. Surgical interventions are becoming less invasive, and patients heal faster and suffer less morbidity. In this preclinical in vivo study, we compared a new ultra-fine grained titanium (ufgTi) implant material with a hydrophilic nano-patterned surface to commercially pure titanium (cpTi) in a well-established animal model. CpTi grade 4 was subjected to Equal Channel Angular Pressing (ECAP), followed by a cold drawing process that provided ultra-fine-grained titanium (ufgTi) with a mean grain size of 300 nm. After metallographic assessment, the surface topography was characterized by laser confocal microscopy and atomic force microscopy. UfgTi and cpTi implants were inserted in the mandible and maxilla of miniature pigs that healed for 4 and for 8 weeks. Osseointegration was assessed by biomechanical torque out analysis, histomorphometric evaluation, and micro-CT analysis. The metallographic properties of UfgTi were significantly better than those of cpTi. Their surface topographies had similar hydrophilic nano-patterned characteristics, with no significant differences in the nanometre range. Histomorphometric and biomechanical torque out analysis revealed no significant differences between ufgTi and cpTi in environments of either low (maxilla) or high (mandible) bone density. We obtained high bone-to-implant contact values irrespective of the bony microarchitecture even when the bone mineral density was low. Overall, this investigation suggests that ufgTi forms a hydrophilic nano-patterned surface with superior metallographic properties compared to cpTi and high levels of osseointegration. Thus, ufgTi has therapeutic potential as a future strategy for the development of small diameter implants to enable less invasive treatment concepts, reduce patient morbidity and may also lower the costs of patient care.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Royal Society of Chemistry Icon for Bern Open Repository and Information System
Loading ...
Support Center