Format

Send to

Choose Destination
Mol Cancer Ther. 2018 Aug;17(8):1637-1647. doi: 10.1158/1535-7163.MCT-17-0975. Epub 2018 May 16.

Orally Bioavailable and Blood-Brain Barrier-Penetrating ATM Inhibitor (AZ32) Radiosensitizes Intracranial Gliomas in Mice.

Author information

1
Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
2
AstraZeneca - Bioscience, DMPK, Chemistry, Discovery Sciences and Projects-Oncology, IMED Biotech Unit, Alderley Park, Cambridge, United Kingdom; and DizalPharma, Shanghai, China.
3
Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. kristoffer.valerie@vcuhealth.org.
#
Contributed equally

Abstract

Inhibition of ataxia-telangiectasia mutated (ATM) during radiotherapy of glioblastoma multiforme (GBM) may improve tumor control by short-circuiting the response to radiation-induced DNA damage. A major impediment for clinical implementation is that current inhibitors have limited central nervous system (CNS) bioavailability; thus, the goal was to identify ATM inhibitors (ATMi) with improved CNS penetration. Drug screens and refinement of lead compounds identified AZ31 and AZ32. The compounds were then tested in vivo for efficacy and impact on tumor and healthy brain. Both AZ31 and AZ32 blocked the DNA damage response and radiosensitized GBM cells in vitro AZ32, with enhanced blood-brain barrier (BBB) penetration, was highly efficient in vivo as radiosensitizer in syngeneic and human, orthotopic mouse glioma model compared with AZ31. Furthermore, human glioma cell lines expressing mutant p53 or having checkpoint-defective mutations were particularly sensitive to ATMi radiosensitization. The mechanism for this p53 effect involves a propensity to undergo mitotic catastrophe relative to cells with wild-type p53. In vivo, apoptosis was >6-fold higher in tumor relative to healthy brain after exposure to AZ32 and low-dose radiation. AZ32 is the first ATMi with oral bioavailability shown to radiosensitize glioma and improve survival in orthotopic mouse models. These findings support the development of a clinical-grade, BBB-penetrating ATMi for the treatment of GBM. Importantly, because many GBMs have defective p53 signaling, the use of an ATMi concurrent with standard radiotherapy is expected to be cancer-specific, increase the therapeutic ratio, and maintain full therapeutic effect at lower radiation doses. Mol Cancer Ther; 17(8); 1637-47. ©2018 AACR.

PMID:
29769307
PMCID:
PMC6072596
DOI:
10.1158/1535-7163.MCT-17-0975
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center