Send to

Choose Destination
Blood. 2017 Nov 30;130(22):2431-2442. doi: 10.1182/blood-2017-04-780106. Epub 2017 Oct 10.

Chd7 deficiency delays leukemogenesis in mice induced by Cbfb-MYH11.

Author information

Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA.
Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and.
Abramson Family Cancer Research Institute and.
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA.


Inversion of chromosome 16 is a consistent finding in patients with acute myeloid leukemia subtype M4 with eosinophilia, which generates a CBFB-MYH11 fusion gene. Previous studies showed that the interaction between CBFβ-smooth muscle myosin heavy chain (SMMHC; encoded by CBFB-MYH11) and RUNX1 plays a critical role in the pathogenesis of this leukemia. Recently, it was shown that chromodomain helicase DNA-binding protein-7 (CHD7) interacts with RUNX1 and suppresses RUNX1-induced expansion of hematopoietic stem and progenitor cells. These results suggest that CHD7 is also critical for CBFB-MYH11-induced leukemogenesis. To test this hypothesis, we generated Chd7f/fMx1-CreCbfb+/56M mice, which expressed the Cbfb-MYH11 fusion gene and deactivated Chd7 in hematopoietic cells upon inducing Cre with polyinosinic-polycytidylic acid. The Lin-Sca1-c-Kit+ (LK) population was significantly lower in Chd7f/fMx1-CreCbfb+/56M mice than in Mx1-CreCbfb+/56M mice. In addition, there were fewer 5-bromo-2'-deoxyuridine-positive cells in the LK population in Chd7f/fMx1-CreCbfb+/56M mice, and genes associated with cell cycle, cell growth, and proliferation were differentially expressed between Chd7f/fMx1-CreCbfb+/56M and Mx1-CreCbfb+/56M leukemic cells. In vitro studies showed that CHD7 interacted with CBFβ-SMMHC through RUNX1 and that CHD7 enhanced transcriptional activity of RUNX1 and CBFβ-SMMHC on Csf1r, a RUNX1 target gene. Moreover, RNA sequencing of c-Kit+ cells showed that CHD7 functions mostly through altering the expression of RUNX1 target genes. Most importantly, Chd7 deficiency delayed Cbfb-MYH11-induced leukemia in both primary and transplanted mice. These data indicate that Chd7 is important for Cbfb-MYH11-induced leukemogenesis by facilitating RUNX1 regulation of transcription and cellular proliferation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center