Circuity analyses of HSR network and high-speed train paths in China

PLoS One. 2017 Sep 25;12(9):e0176005. doi: 10.1371/journal.pone.0176005. eCollection 2017.

Abstract

Circuity, defined as the ratio of the shortest network distance to the Euclidean distance between one origin-destination (O-D) pair, can be adopted as a helpful evaluation method of indirect degrees of train paths. In this paper, the maximum circuity of the paths of operated trains is set to be the threshold value of the circuity of high-speed train paths. For the shortest paths of any node pairs, if their circuity is not higher than the threshold value, the paths can be regarded as the reasonable paths. With the consideration of a certain relative or absolute error, we cluster the reasonable paths on the basis of their inclusion relationship and the center path of each class represents a passenger transit corridor. We take the high-speed rail (HSR) network in China at the end of 2014 as an example, and obtain 51 passenger transit corridors, which are alternative sets of train paths. Furthermore, we analyze the circuity distribution of paths of all node pairs in the network. We find that the high circuity of train paths can be decreased with the construction of a high-speed railway line, which indicates that the structure of the HSR network in China tends to be more complete and the HSR network can make the Chinese railway network more efficient.

Grants and funding

This study was supported by the National Natural Science Foundation of China (Grant No. U1334207).