Format

Send to

Choose Destination
Cytotherapy. 2017 Sep;19(9):1113-1124. doi: 10.1016/j.jcyt.2017.05.009. Epub 2017 Jun 30.

Development, functional characterization and validation of methodology for GMP-compliant manufacture of phagocytic macrophages: A novel cellular therapeutic for liver cirrhosis.

Author information

1
Advanced Therapeutics, Scottish National Blood Transfusion Service, 21 Ellen's Glen Road, Edinburgh, United Kingdom.
2
Scottish National Blood Transfusion Service Cellular Therapy Development Centre, MRC Centre for Regenerative Medicine, The University of Edinburgh bioQuarter, Edinburgh, United Kingdom.
3
Red Cell Integrated Laboratory, Scottish National Blood Transfusion Service, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.
4
MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
5
Advanced Therapeutics, Scottish National Blood Transfusion Service, 21 Ellen's Glen Road, Edinburgh, United Kingdom; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
6
Advanced Therapeutics, Scottish National Blood Transfusion Service, 21 Ellen's Glen Road, Edinburgh, United Kingdom; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom. Electronic address: johncampbell3@nhs.net.

Abstract

BACKGROUND AIMS:

Autologous macrophage therapy represents a potentially significant therapeutic advance for the treatment of severe progressive liver cirrhosis. Administration of macrophages has been shown to reduce inflammation and drive fibrotic scar breakdown and tissue repair in relevant models. This therapeutic approach is being assessed for safety and feasibility in a first-in-human trial (MAcrophages Therapy for liver CirrHosis [MATCH] trial).

METHODS:

We outline the development and validation phases of GMP production. This includes use of the CliniMACS Prodigy cell sorting system to isolate CD14+ cells; optimizing macrophage culture conditions, assessing cellular identity, product purity, functional capability and determining the stability of the final cell product.

RESULTS:

The GMP-compliant macrophage products have a high level of purity and viability, and have a consistent phenotypic profile, expressing high levels of mature macrophage markers 25F9 and CD206 and low levels of CCR2. The macrophages demonstrate effective phagocytic capacity, are constitutively oriented to an anti-inflammatory profile and remain responsive to cytokine and TLR stimulation. The process validation shows that the cell product in excipient is remarkably robust, consistently passing the viability and phenotypic release criteria up to 48 hours after harvest.

CONCLUSIONS:

This is the first report of validation of a large-scale, fully Good Manufacturing Practice-compliant, autologous macrophage cell therapy product for the potential treatment of cirrhosis. Phenotypic and functional assays confirm that these cells remain functionally viable for up to 48 h, allowing significant flexibility in administration to patients.

KEYWORDS:

GMP; cell therapy; cirrhosis; macrophage; process validation

PMID:
28673774
PMCID:
PMC5571439
DOI:
10.1016/j.jcyt.2017.05.009
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center