Format

Send to

Choose Destination
J Biol Chem. 2017 Aug 4;292(31):12906-12920. doi: 10.1074/jbc.M117.788869. Epub 2017 Jun 20.

Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site.

Author information

1
From the Faculty of Biology, Department of Plant Physiology and Photobiology, and.
2
the Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden.
3
the Faculty of Chemistry, Department of Biochemistry, Philipps-Universität, 35032 Marburg, Germany and.
4
From the Faculty of Biology, Department of Plant Physiology and Photobiology, and batschau@staff.uni-marburg.de.

Abstract

Plant cryptochromes (cry) act as UV-A/blue light receptors. The prototype, Arabidopsis thaliana cry1, regulates several light responses during the life cycle, including de-etiolation, and is also involved in regulating flowering time. The cry1 photocycle is initiated by light absorption by its FAD chromophore, which is most likely fully oxidized (FADox) in the dark state and photoreduced to the neutral flavin semiquinone (FADH°) in its lit state. Cryptochromes lack the DNA-repair activity of the closely related DNA photolyases, but they retain the ability to bind nucleotides such as ATP. The previously characterized L407F mutant allele of Arabidopsis cry1 is biologically hyperactive and seems to mimic the ATP-bound state of cry1, but the reason for this phenotypic change is unclear. Here, we show that cry1L407F can still bind ATP, has less pronounced photoreduction and formation of FADH° than wild-type cry1, and has a dark reversion rate 1.7 times lower than that of the wild type. The hyperactivity of cry1L407F is not related to a higher FADH° occupancy of the photoreceptor but is caused by a structural alteration close to the ATP-binding site. Moreover, we show that ATP binds to cry1 in both the dark and the lit states. This binding was not affected by cry1's C-terminal extension, which is important for signal transduction. Finally, we show that a recently discovered chemical inhibitor of cry1, 3-bromo-7-nitroindazole, competes for ATP binding and thereby diminishes FADH° formation, which demonstrates that both processes are important for cry1 function.

KEYWORDS:

ATP; cryptochrome; nucleotide; nucleotide binding; photobiology; plant biochemistry

PMID:
28634231
PMCID:
PMC5546031
DOI:
10.1074/jbc.M117.788869
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center