Format

Send to

Choose Destination
Nat Commun. 2017 Jun 1;8:15692. doi: 10.1038/ncomms15692.

Myosin Va molecular motors manoeuvre liposome cargo through suspended actin filament intersections in vitro.

Author information

1
Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA.
2
Department of Mathematics, University of California, Davis, California 95616, USA.

Abstract

Intracellular cargo transport relies on myosin Va molecular motor ensembles to travel along the cell's three-dimensional (3D) highway of actin filaments. At actin filament intersections, the intersecting filament is a structural barrier to and an alternate track for directed cargo transport. Here we use 3D super-resolution fluorescence imaging to determine the directional outcome (that is, continues straight, turns or terminates) for an ∼10 motor ensemble transporting a 350 nm lipid-bound cargo that encounters a suspended 3D actin filament intersection in vitro. Motor-cargo complexes that interact with the intersecting filament go straight through the intersection 62% of the time, nearly twice that for turning. To explain this, we develop an in silico model, supported by optical trapping data, suggesting that the motors' diffusive movements on the vesicle surface and the extent of their engagement with the two intersecting actin tracks biases the motor-cargo complex on average to go straight through the intersection.

PMID:
28569841
PMCID:
PMC5461480
DOI:
10.1038/ncomms15692
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center