Format

Send to

Choose Destination
Mol Ecol Resour. 2017 Nov;17(6):1308-1317. doi: 10.1111/1755-0998.12684. Epub 2017 Jun 6.

A comparison of individual-based genetic distance metrics for landscape genetics.

Author information

1
Climate Impacts Group, College of the Environment, University of Washington, Seattle, WA, USA.
2
Computational Ecology Laboratory, Division of Biological Sciences, University of Montana, Missoula, MT, USA.
3
USDA Forest Service, Rocky Mountain Research Station, Flagstaff, AZ, USA.

Abstract

A major aim of landscape genetics is to understand how landscapes resist gene flow and thereby influence population genetic structure. An empirical understanding of this process provides a wealth of information that can be used to guide conservation and management of species in fragmented landscapes and also to predict how landscape change may affect population viability. Statistical approaches to infer the true model among competing alternatives are based on the strength of the relationship between pairwise genetic distances and landscape distances among sampled individuals in a population. A variety of methods have been devised to quantify individual genetic distances, but no study has yet compared their relative performance when used for model selection in landscape genetics. In this study, we used population genetic simulations to assess the accuracy of 16 individual-based genetic distance metrics under varying sample sizes and degree of population genetic structure. We found most metrics performed well when sample size and genetic structure was high. However, it was much more challenging to infer the true model when sample size and genetic structure was low. Under these conditions, we found genetic distance metrics based on principal components analysis were the most accurate (although several other metrics performed similarly), but only when they were derived from multiple principal components axes (the optimal number varied depending on the degree of population genetic structure). Our results provide guidance for which genetic distance metrics maximize model selection accuracy and thereby better inform conservation and management decisions based upon landscape genetic analysis.

KEYWORDS:

genetic distance; isolation by distance; isolation by resistance; landscape genetics; model selection; principal components analysis

PMID:
28449317
DOI:
10.1111/1755-0998.12684
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center