Format

Send to

Choose Destination
Biochem Biophys Res Commun. 2017 May 13;486(4):945-950. doi: 10.1016/j.bbrc.2017.03.131. Epub 2017 Mar 24.

Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms.

Author information

1
Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612, Republic of Korea.
2
Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.
3
Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea.
4
Medical Research Center of Color Seven, Seoul 06719, Republic of Korea.
5
Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam 50612, Republic of Korea. Electronic address: rmshin01@gmail.com.
6
Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Republic of Korea. Electronic address: julie@pusan.ac.kr.

Abstract

Photostimulation with low-level light emitting diode therapy (LED-T) modulates neurological and psychological functions. The purpose of this study was to evaluate the effects of LED-T pretreatment on the mouse brain after ischemia/reperfusion and to investigate the underlying mechanisms. Ischemia/reperfusion brain injury was induced by middle cerebral artery occlusion. The mice received LED-T twice a day for 2 days prior to cerebral ischemia. After reperfusion, the LED-T group showed significantly smaller infarct and edema volumes, fewer behavioral deficits compared to injured mice that did not receive LED-T and significantly higher cerebral blood flow compared to the vehicle group. We observed lower levels of endothelial nitric oxide synthase (eNOS) phosphorylation in the injured mouse brains, but significantly higher eNOS phosphorylation in LED-T-pretreated mice. The enhanced phospho-eNOS was inhibited by LY294002, indicating that the effects of LED-T on the ischemic brain could be attributed to the upregulation of eNOS phosphorylation through the phosphoinositide 3-kinase (PI3K)/Akt pathway. Moreover, no reductions in infarct or edema volume were observed in LED-T-pretreated eNOS-deficient (eNOS-/-) mice. Collectively, we found that pretreatment with LED-T reduced the amount of ischemia-induced brain damage. Importantly, we revealed that these effects were mediated by the stimulation of eNOS phosphorylation via the PI3K/Akt pathway.

KEYWORDS:

Cerebral blood flow; Endothelial nitric oxide synthase; Focal cerebral ischemia; Vascular dysfunction; eNOS-deficient mice

PMID:
28347821
DOI:
10.1016/j.bbrc.2017.03.131
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center