Format

Send to

Choose Destination
J Cell Physiol. 2017 Mar;232(3):650-664. doi: 10.1002/jcp.25609. Epub 2016 Oct 19.

Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone-Induced Muscle Atrophy In Vitro.

Author information

1
Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, Handa, Aichi, Japan.
2
Program in Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan.
3
Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.

Abstract

It is generally recognized that synthetic glucocorticoids induce skeletal muscle weakness, and endogenous glucocorticoid levels increase in patients with muscle atrophy. It is reported that heat stress attenuates glucocorticoid-induced muscle atrophy; however, the mechanisms involved are unknown. Therefore, we examined the mechanisms underlying the effects of heat stress against glucocorticoid-induced muscle atrophy using C2C12 myotubes in vitro, focusing on expression of key molecules and signaling pathways involved in regulating protein synthesis and degradation. The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented the morphological and biochemical glucocorticoid effects. Heat stress also attenuated increases in mRNAs of regulated in development and DNA damage responses 1 (REDD1) and Kruppel-like factor 15 (KLF15). Heat stress recovered the dexamethasone-induced inhibition of PI3K/Akt signaling. These data suggest that changes in anabolic and catabolic signals are involved in heat stress-induced protection against glucocorticoid-induced muscle atrophy. These results have a potentially broad clinical impact because elevated glucocorticoid levels are implicated in a wide range of diseases associated with muscle wasting. J. Cell. Physiol. 232: 650-664, 2017. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.

PMID:
27649272
PMCID:
PMC5132157
DOI:
10.1002/jcp.25609
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center