Format

Send to

Choose Destination
Neuron. 2016 Jun 1;90(5):1057-70. doi: 10.1016/j.neuron.2016.04.028. Epub 2016 May 5.

Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits.

Author information

1
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; CNS Disorders Center and the Neurosciences Institute, Stony Brook University, Stony Brook, NY 11794, USA. Electronic address: li.jiang@stonybrook.edu.
2
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; CNS Disorders Center and the Neurosciences Institute, Stony Brook University, Stony Brook, NY 11794, USA.
3
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; CNS Disorders Center and the Neurosciences Institute, Stony Brook University, Stony Brook, NY 11794, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
4
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; CNS Disorders Center and the Neurosciences Institute, Stony Brook University, Stony Brook, NY 11794, USA; MSTP, Stony Brook University, Stony Brook, NY 11794, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
5
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; CNS Disorders Center and the Neurosciences Institute, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
6
Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; CNS Disorders Center and the Neurosciences Institute, Stony Brook University, Stony Brook, NY 11794, USA. Electronic address: lorna.role@stonybrook.edu.

Abstract

We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photostimulation of endogenous cholinergic input (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs), (2) enhances glutamatergic synaptic transmission in the BLA, and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories.

PMID:
27161525
PMCID:
PMC4891303
DOI:
10.1016/j.neuron.2016.04.028
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center