Format

Send to

Choose Destination
Cancer Cell Int. 2015 Dec 7;15:112. doi: 10.1186/s12935-015-0263-4. eCollection 2015.

High-grade serous ovarian cancer cell lines exhibit heterogeneous responses to growth factor stimulation.

Author information

1
Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA.

Abstract

BACKGROUND:

The factors driving the onset and progression of ovarian cancer are not well understood. Recent reports have identified cell lines that are representative of the genomic pattern of high-grade serous ovarian cancer (HGSOC), in which greater than 90 % of tumors have a mutation in TP53. However, many of these representative cell lines have not been widely used so it is unclear if these cell lines capture the variability that is characteristic of the disease.

METHODS:

We investigated six TP53-mutant HGSOC cell lines (Caov3, Caov4, OV90, OVCA432, OVCAR3, and OVCAR4) for migration, MMP2 expression, proliferation, and VEGF secretion, behaviors that play critical roles in tumor progression. In addition to comparing baseline variation between the cell lines, we determined how these behaviors changed in response to four growth factors implicated in ovarian cancer progression: HB-EGF, NRG1β, IGF1, and HGF.

RESULTS:

Baseline levels of each behavior varied across the cell lines and this variation was comparable to that seen in tumors. All four growth factors impacted cell proliferation or VEGF secretion, and HB-EGF, NRG1β, and HGF impacted wound closure or MMP2 expression in at least two cell lines. Growth factor-induced responses demonstrated substantial heterogeneity, with cell lines sensitive to all four growth factors, a subset of the growth factors, or none of the growth factors, depending on the response of interest. Principal component analysis demonstrated that the data clustered together based on cell line rather than growth factor identity, suggesting that response is dependent on intrinsic qualities of the tumor cell rather than the growth factor.

CONCLUSIONS:

Significant variation was seen among the cell lines, consistent with the heterogeneity of HGSOC.

KEYWORDS:

Growth factors; HB-EGF; HGF; HGSOC; IGF1; Metastasis; NRG1β; Ovarian cancer; Tumor heterogeneity

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center