Format

Send to

Choose Destination
Evid Based Complement Alternat Med. 2015;2015:391767. doi: 10.1155/2015/391767. Epub 2015 Feb 23.

Effect of Lactobacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice.

Author information

1
Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan ; Probiotics Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
2
Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.
3
School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan ; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
4
Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Zhunan Township, Miaoli County 35053, Taiwan.

Abstract

Recent studies have demonstrated beneficial effects of specific probiotics on alleviating obesity-related disorders. Here we aimed to identify probiotics with potential antiobesity activity among 88 lactic acid bacterial strains via in vitro screening assays, and a Lactobacillus plantarum strain K21 was found to harbor abilities required for hydrolyzing bile salt, reducing cholesterol, and inhibiting the accumulation of lipid in 3T3-L1 preadipocytes. Furthermore, effects of K21 on diet-induced obese (DIO) mice were examined. Male C57Bl/6J mice received a normal diet, high-fat diet (HFD), or HFD with K21 administration (10(9) CFU in 0.2 mL PBS/day) for eight weeks. Supplementation of K21, but not placebo, appeared to alleviate body weight gain and epididymal fat mass accumulation, reduce plasma leptin levels, decrease cholesterol and triglyceride levels, and mitigate liver damage in DIO mice. Moreover, the hepatic expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) related to adipogenesis was significantly downregulated in DIO mice by K21 intervention. We also found that K21 supplementation strengthens intestinal permeability and modulates the amount of Lactobacillus spp., Bifidobacterium spp., and Clostridium perfringens in the cecal contents of DIO mice. In conclusion, our results suggest that dietary intake of K21 protects against the onset of HFD-induced obesity through multiple mechanisms of action.

Supplemental Content

Full text links

Icon for Hindawi Limited Icon for PubMed Central
Loading ...
Support Center