Format

Send to

Choose Destination
Nature. 2015 Apr 30;520(7549):679-82. doi: 10.1038/nature14171. Epub 2015 Feb 23.

NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism.

Author information

1
1] Departamento de Bioquímica e Biologia Molecular, National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, 36570.000 Viçosa, Minas Gerais, Brazil [2] National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, 36570.000 Viçosa, Minas Gerais, Brazil.
2
1] National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, 36570.000 Viçosa, Minas Gerais, Brazil [2] Departamento de Genética, Universidade Federal do Rio de Janeiro, 21944.970 Rio de Janeiro, Brazil.
3
National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, 36570.000 Viçosa, Minas Gerais, Brazil.
4
Departamento de Zootecnia, Universidade Federal de Viçosa, 36570.000 Viçosa, Minas Gerais, Brazil.
5
1] National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, 36570.000 Viçosa, Minas Gerais, Brazil [2] Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.

Abstract

Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security. In virus-plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts. In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections. Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses. Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP), leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.

PMID:
25707794
PMCID:
PMC4779052
DOI:
10.1038/nature14171
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center