Format

Send to

Choose Destination
Genetics. 1989 Mar;121(3):551-69.

Molecular population genetics of mtDNA size variation in crickets.

Author information

1
Department of Biology, Yale University, New Haven, Connecticut 06511.

Abstract

Nucleotide sequence analysis of a region of cricket (Gryllus firmus) mtDNA showing discrete length variation revealed tandemly repeated sequences 220 base pairs (bp) in length. The repeats consist of 206 bp sequences bounded by the dyad symmetric sequence 5'GGGGGCATGCCCCC3'. The sequence data showed that mtDNA size variation in this species is due to variation in the number of copies of tandem repeats. Southern blot analysis was used to document the frequency of crickets heteroplasmic for two or more different-sized mtDNAs. In New England populations of G. firmus and a close relative Gryllus pennsylvanicus approximately 60% of the former and 45% of the latter were heteroplasmic. From densitometry of autoradiographs the frequencies of mtDNA size classes were determined for the population samples and are shown to very different in the two species. However, in populations where hybridization between the two species has occurred, the frequencies of size classes and cytoplasmic genotypes in each species' distinct mtDNA lineage were shifted in a manner suggesting nuclear-cytoplasmic interactions. The data were applied to reported diversity indices and hierarchical statistics. The hierarchical statistics indicated that the greatest proportion of variation for mtDNA size was due to variation among individuals in their cytoplasmic genotypes (heteroplasmic or homoplasmic state). The diversity indices were used to estimate a per-generation mutation rate for size variants of 10(-4). The data are discussed in light of the relationship between genetic drift and mutation in maintaining variation for mtDNA size.

PMID:
2565855
PMCID:
PMC1203640
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center