Send to

Choose Destination
Biophys J. 2013 May 7;104(9):1905-16. doi: 10.1016/j.bpj.2013.03.047.

Fractional Ca(2+) currents through TRP and TRPL channels in Drosophila photoreceptors.

Author information

Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK.


Light responses in Drosophila photoreceptors are mediated by two Ca(2+) permeable cation channels, transient receptor potential (TRP) and TRP-like (TRPL). Although Ca(2+) influx via these channels is critical for amplification, inactivation, and light adaptation, the fractional contribution of Ca(2+) to the currents (Pf) has not been measured. We describe a slow (τ ∼ 350 ms) tail current in voltage-clamped light responses and show that it is mediated by electrogenic Na(+)/Ca(2+) exchange. Assuming a 3Na:1Ca stoichiometry, we derive empirical estimates of Pf by comparing the charge integrals of the exchanger and light-induced currents. For TRPL channels, Pf was ∼17% as predicted by Goldman-Hodgkin-Katz (GHK) theory. Pf for TRP (29%) and wild-type flies (26%) was higher, but lower than the GHK prediction (45% and 42%). As predicted by GHK theory, Pf for both channels increased with extracellular [Ca(2+)], and was largely independent of voltage between -100 and -30 mV. A model incorporating intra- and extracellular geometry, ion permeation, diffusion, extrusion, and buffering suggested that the deviation from GHK predictions was largely accounted for by extracellular ionic depletion during the light-induced currents, and the time course of the Na(+)/Ca(2+) exchange current could be used to obtain estimates of cellular Ca(2+) buffering capacities.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center