Endoplasmic reticulum stress plays a pivotal role in cell death mediated by the pan-deacetylase inhibitor panobinostat in human hepatocellular cancer cells

Transl Oncol. 2013 Apr;6(2):143-57. doi: 10.1593/tlo.12271. Epub 2013 Apr 1.

Abstract

Panobinostat, a pan-deacetylase inhibitor, represents a novel therapeutic option for cancer diseases. Besides its ability to block histone deacetylases (HDACs) by promoting histone hyperacetylation, panobinostat interferes with several cell death pathways providing a potential efficacy against tumors. We have previously demonstrated that panobinostat has a potent apoptotic activity in vitro and causes a significant growth delay of hepatocellular carcinoma (HCC) tumor xenografts in nude mice models. Here, we show that treatment with panobinostat is able to induce noncanonical apoptotic cell death in HepG2 and in Hep3B cells, involving the endoplasmic reticulum (ER) stress by up-regulation of the molecular chaperone binding immunoglobulin protein/glucose-regulated protein 78, activation of eukaryotic initiation factor 2α-activating transcription factor 4 (tax-responsive enhancer element B67) and inositol requiring 1α-X-box binding protein 1 factors, strong increase and nuclear translocation of the transcription factor C/EBP homologous protein/growth arrest and DNA damage-inducible gene 153, and involvement of c-Jun N-terminal kinase. These signaling cascades culminate into the activation of the ER-located caspase-4/12 and of executioner caspases, which finally lead to cell demise. Our results clearly show that panobinostat induces an alternative ER stress-mediated cell death pathway in HCC cells, independent of the p53 status.