Format

Send to

Choose Destination
Brain Res. 2013 Apr 4;1504:74-84. doi: 10.1016/j.brainres.2013.01.041. Epub 2013 Feb 8.

Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices.

Author information

1
Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. giang.tong@charite.de

Abstract

Therapeutic hypothermia has emerged as an effective neuroprotective therapy for cardiac arrest survivors. There are a number of purported mechanisms for therapeutic hypothermia, but the exact mechanism still remains to be elucidated. Although hypothermia generally down-regulates protein synthesis and metabolism in mammalian cells, a small subset of homologous (>70%) cold-shock proteins (RNA-binding motif protein 3, RBM3 and cold-inducible RNA-binding protein, CIRP) are induced under these conditions. In addition, RBM3 up-regulation in neuronal cells has recently been implicated in hypothermia-induced neuroprotection. Therefore, we compared the effects of moderate (33.5°C) and deep (17°C) hypothermia with normothermia (37°C) on the regulation of RBM3 and CIRP expressions in murine organotypic hippocampal slice cultures (OHSC), hippocampal neuronal cells (HT-22), and microglia cells (BV-2). Moderate hypothermia resulted in significant up-regulation of both RBM3 and CIRP mRNA in murine OHSC, but deep hyporthermia did not. RBM3 protein regulation was also significantly up-regulated by 33.5°C, but no significant up-regulation of CIRP protein was observed in the OHSC. Additionally, OHSC exposed to 17°C for 24h were positive for Propidium Iodide (PI) immunostaining, indicating the onset of cell death. Similarly, RBM3 gene expression in a HT-22 neuronal cells mono-culture and direct co-culture of HT-22 neuronal cells with BV-2 microglia cells were also up-regulated at 33.5°C but only in the co-culture at 17°C. No significant up-regulation of RBM3 nor CIRP gene expression were observed in a BV-2 mono-culture at either temperature. We observed that RBM3 mRNA and protein expressions in murine OHSC, as well as in mono-culture of HT-22 neuronal cells and direct co-culture of HT-22 neuronal cells with BV-2 microglia cells were significantly up-regulated by exposure to moderate hypothermia. These findings further support the implication of RBM3 as a potential effector for hypothermia-induced neuroprotection.

PMID:
23415676
DOI:
10.1016/j.brainres.2013.01.041
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center