Format

Send to

Choose Destination
Cell. 2013 Feb 14;152(4):743-54. doi: 10.1016/j.cell.2013.01.015.

The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus.

Author information

1
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Abstract

Long noncoding RNAs (lncRNAs) are increasingly appreciated as regulators of cell-specific gene expression. Here, an enhancer-like lncRNA termed NeST (nettoie Salmonella pas Theiler's [cleanup Salmonella not Theiler's]) is shown to be causal for all phenotypes conferred by murine viral susceptibility locus Tmevp3. This locus was defined by crosses between SJL/J and B10.S mice and contains several candidate genes, including NeST. The SJL/J-derived locus confers higher lncRNA expression, increased interferon-γ (IFN-γ) abundance in activated CD8(+) T cells, increased Theiler's virus persistence, and decreased Salmonella enterica pathogenesis. Transgenic expression of NeST lncRNA alone was sufficient to confer all phenotypes of the SJL/J locus. NeST RNA was found to bind WDR5, a component of the histone H3 lysine 4 methyltransferase complex, and to alter histone 3 methylation at the IFN-γ locus. Thus, this lncRNA regulates epigenetic marking of IFN-γ-encoding chromatin, expression of IFN-γ, and susceptibility to a viral and a bacterial pathogen.

Comment in

PMID:
23415224
PMCID:
PMC3577098
DOI:
10.1016/j.cell.2013.01.015
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center