Format

Send to

Choose Destination
J Mol Cell Cardiol. 2013 May;58:172-81. doi: 10.1016/j.yjmcc.2012.11.011. Epub 2012 Dec 6.

X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca²⁺]i.

Author information

1
Department of Physiology, Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA.

Abstract

X-ROS signaling is a novel redox signaling pathway that links mechanical stress to changes in [Ca(2+)]i. This pathway is activated rapidly and locally within a muscle cell under physiological conditions, but can also contribute to Ca(2+)-dependent arrhythmia in the heart and to the dystrophic phenotype in the heart and skeletal muscle. Upon physiologic cellular stretch, microtubules serve as mechanotransducers to activate NADPH oxidase 2 in the transverse tubules and sarcolemmal membranes to produce reactive oxygen species (ROS). In the heart, the ROS acts locally to activate ryanodine receptor Ca(2+) release channels in the junctional sarcoplasmic reticulum, increasing the Ca(2+) spark rate and "tuning" excitation-contraction coupling. In the skeletal muscle, where Ca(2+) sparks are not normally observed, the X-ROS signaling process is muted. However in muscular dystrophies, such as Duchenne Muscular Dystrophy and dysferlinopathy, X-ROS signaling operates at a high level and contributes to myopathy. Importantly, Ca(2+) permeable stretch-activated channels are activated by X-ROS and contribute to skeletal muscle pathology. Here we review X-ROS signaling and mechanotransduction in striated muscle, and highlight important questions to drive future work on stretch-dependent signaling. We conclude that X-ROS provides an exciting mechanism for the mechanical control of redox and Ca(2+) signaling, but much work is needed to establish its contribution to physiologic and pathophysiologic processes in diverse cell systems.

PMID:
23220288
PMCID:
PMC3951390
DOI:
10.1016/j.yjmcc.2012.11.011
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center