Format

Send to

Choose Destination
Mol Cell. 2013 Jan 10;49(1):172-85. doi: 10.1016/j.molcel.2012.10.003. Epub 2012 Nov 8.

Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex.

Author information

1
Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

Abstract

The metabolism of glucose and glutamine, primary carbon sources utilized by mitochondria to generate energy and macromolecules for cell growth, is directly regulated by mTORC1. We show that glucose and glutamine, by supplying carbons to the TCA cycle to produce ATP, positively feed back to mTORC1 through an AMPK-, TSC1/2-, and Rag-independent mechanism by regulating mTORC1 assembly and its lysosomal localization. We discovered that the ATP-dependent TTT-RUVBL1/2 complex was disassembled and repressed by energy depletion, resulting in its decreased interaction with mTOR. The TTT-RUVBL complex was necessary for the interaction between mTORC1 and Rag and formation of mTORC1 obligate dimers. In cancer tissues, TTT-RUVBL complex mRNAs were elevated and positively correlated with transcripts encoding proteins of anabolic metabolism and mitochondrial function-all mTORC1-regulated processes. Thus, the TTT-RUVBL1/2 complex responds to the cell's metabolic state, directly regulating the functional assembly of mTORC1 and indirectly controlling the nutrient signal from Rags to mTORC1.

PMID:
23142078
PMCID:
PMC3545014
DOI:
10.1016/j.molcel.2012.10.003
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center