Format

Send to

Choose Destination
PLoS One. 2012;7(10):e47061. doi: 10.1371/journal.pone.0047061. Epub 2012 Oct 15.

Thermal unfolding pathway of PHD2 catalytic domain in three different PHD2 species: computational approaches.

Author information

1
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.

Abstract

Prolyl hydroxylase domain 2 containing protein (PHD2) is a key protein in regulation of angiogenesis and metastasis. In normoxic condition, PHD2 triggers the degradation of hypoxia-inducible factor 1 (HIF-1α) that induces the expression of hypoxia response genes. Therefore the correct function of PHD2 would inhibit angiogenesis and consequent metastasis of tumor cells in normoxic condition. PHD2 mutations were reported in some common cancers. However, high levels of HIF-1α protein were observed even in normoxic metastatic tumors with normal expression of wild type PHD2. PHD2 malfunctions due to protein misfolding may be the underlying reason of metastasis and invasion in such cases. In this study, we scrutinize the unfolding pathways of the PHD2 catalytic domain's possible species and demonstrate the properties of their unfolding states by computational approaches. Our study introduces the possibility of aggregation disaster for the prominent species of PHD2 during its partial unfolding. This may justify PHD2 inability to regulate HIF-1α level in some normoxic tumor types.

PMID:
23077544
PMCID:
PMC3471951
DOI:
10.1371/journal.pone.0047061
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center