Format

Send to

Choose Destination
Science. 2012 Nov 2;338(6107):643-7. doi: 10.1126/science.1228604. Epub 2012 Oct 4.

Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.

Author information

1
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK.

Abstract

The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

PMID:
23042296
DOI:
10.1126/science.1228604
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center