Format

Send to

Choose Destination
PLoS One. 2012;7(5):e37541. doi: 10.1371/journal.pone.0037541. Epub 2012 May 30.

Chronic alcohol exposure alters behavioral and synaptic plasticity of the rodent prefrontal cortex.

Author information

1
School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America. kroener@utdallas.edu

Abstract

In the present study, we used a mouse model of chronic intermittent ethanol (CIE) exposure to examine how CIE alters the plasticity of the medial prefrontal cortex (mPFC). In acute slices obtained either immediately or 1-week after the last episode of alcohol exposure, voltage-clamp recording of excitatory post-synaptic currents (EPSCs) in mPFC layer V pyramidal neurons revealed that CIE exposure resulted in an increase in the NMDA/AMPA current ratio. This increase appeared to result from a selective increase in the NMDA component of the EPSC. Consistent with this, Western blot analysis of the postsynaptic density fraction showed that while there was no change in expression of the AMPA GluR1 subunit, NMDA NR1 and NRB subunits were significantly increased in CIE exposed mice when examined immediately after the last episode of alcohol exposure. Unexpectedly, this increase in NR1 and NR2B was no longer observed after 1-week of withdrawal in spite of a persistent increase in synaptic NMDA currents. Analysis of spines on the basal dendrites of layer V neurons revealed that while the total density of spines was not altered, there was a selective increase in the density of mushroom-type spines following CIE exposure. Examination of NMDA-receptor mediated spike-timing-dependent plasticity (STDP) showed that CIE exposure was associated with altered expression of long-term potentiation (LTP). Lastly, behavioral studies using an attentional set-shifting task that depends upon the mPFC for optimal performance revealed deficits in cognitive flexibility in CIE exposed mice when tested up to 1-week after the last episode of alcohol exposure. Taken together, these observations are consistent with those in human alcoholics showing protracted deficits in executive function, and suggest these deficits may be associated with alterations in synaptic plasticity in the mPFC.

PMID:
22666364
PMCID:
PMC3364267
DOI:
10.1371/journal.pone.0037541
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center