Format

Send to

Choose Destination
Environ Microbiol. 2012 May;14(5):1210-23. doi: 10.1111/j.1462-2920.2012.02700.x. Epub 2012 Feb 10.

Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

Author information

1
MIT-WHOI Joint Program, Woods Hole, MA 02543, USA. nlevine@oeb.harvard.edu

Abstract

Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center