Format

Send to

Choose Destination
Plant Cell Environ. 2012 Apr;35(4):747-59. doi: 10.1111/j.1365-3040.2011.02448.x. Epub 2011 Nov 23.

Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity.

Author information

1
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.

Abstract

As water availability for agriculture decreases, breeding or engineering of crops with improved water use efficiency (WUE) will be necessary. As stomata are responsible for controlling gas exchange across the plant epidermis, metabolic processes influencing solute accumulation in guard cells are potential targets for engineering. In addition to its role as an osmoticum, sucrose breakdown may be required for synthesis of other osmotica or generation of the ATP needed for solute uptake. Thus, alterations in partitioning of sucrose between storage and breakdown may affect stomatal function. In agreement with this hypothesis, potato (Solanum tuberosum) plants expressing an antisense construct targeted against sucrose synthase 3 (SuSy3) exhibited decreased stomatal conductance, a slight reduction in CO(2) fixation and increased WUE. Conversely, plants with increased guard cell acid invertase activity caused by the introduction of the SUC2 gene from yeast had increased stomatal conductance, increased CO(2) fixation and decreased WUE. (14)CO(2) feeding experiments indicated that these effects cannot be attributed to alterations in photosynthetic capacity, and most likely reflect alterations in stomatal function. These results highlight the important role that sucrose breakdown may play in guard cell function and indicate the feasibility of manipulating plant WUE through engineering of guard cell sucrose metabolism.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center