Send to

Choose Destination
Neuroscience. 2011 Sep 8;190:301-6. doi: 10.1016/j.neuroscience.2011.06.022. Epub 2011 Jun 17.

The effect of low-energy laser irradiation on apoptotic factors following experimentally induced transient cerebral ischemia.

Author information

Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.


Apoptosis, or programmed cell death, resulting from cerebral ischemia may be related to decreased levels of anti-apoptotic factors, such as serine/threonine kinase (Akt), phosphorylated Akt (pAkt), pBAD, and Bcl-2, and increased levels of pro-apoptotic factors, such as BAD, caspase 9, and caspase 3 activities. In this study, we investigated the effects of low-energy laser (660 nm) irradiation (LLI) on the levels and activity of various anti- and pro-apoptotic factors following ischemia. Transient cerebral ischemia was induced in Sprague-Dawley rats by unilateral occlusion of the middle cerebral artery for 1 h, followed by reperfusion. LLI was then directed on the cerebrum for varying lengths of duration (1, 5, or 10 min at an energy density of 2.64 J/cm², 13.2 J/cm², and 24.6 J/cm², respectively). The expression levels of Akt, pAkt, BAD, pBAD, Bcl-2, caspase 9, and caspase 3 activities were measured 4 days after injury. The levels of Akt, pAkt, Bcl-2, and pBAD were significantly increased following laser irradiation. In addition, LLI significantly decreased caspase 9 and caspase 3 activities caused by ischemia-reperfusion. LLI may protect the brain by upregulating Akt, pAkt, pBAD, and Bcl-2 expression and downregulating caspase 9 and caspase 3 expression following transient cerebral ischemia. This modality is a promising protective therapeutic intervention after strokes or other ischemic events.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center