Format

Send to

Choose Destination
See comment in PubMed Commons below
Front Biosci (Landmark Ed). 2011 Jan 1;16:1132-43.

Mechanisms of oxidative DNA damage induced by carcinogenic arylamines.

Author information

  • 1Department of Environmental and Molecular Medicine, Mie University School of Medicine, Tsu, Mie 514-8507, Japan. mmurata@doc.medic.mie-u.ac.jp

Abstract

Most arylamines are pro-carcinogens, and require metabolic activation to yield ultimate carcinogen metabolites. O-Acetylation of the N-hydroxy form of an arylamine yields an acetoxyarylamine, which can form a highly reactive arylnitrenium ion, the ultimate metabolite responsible for DNA adduct formation. However, we demonstrate here that the N-hydroxy and nitroso forms of arylamines can also induce DNA damage, including 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) lesions, via reactive oxygen species formation. The N-hydroxy and nitroso derivatives of carcinogenic arylamines may contribute to the carcinogenic process through H2O2 formation. N-Hydroxy derivatives induce metal-mediated DNA damage, with remarkable enhancement by NADH. Nitroso derivatives induce NADH-dependent DNA damage in the presence of metal ions. Hydroxy derivatives of arylamines formed by enzymatic hydroxylation or as o- or p-aminophenols can also induce DNA damage in the presence of metal ions. The autoxidation of o-phenylenediamine and several arylamine metabolites is accelerated in the presence of SOD or manganese, resulting in the enhancement of metal-mediated DNA damage. The oxidative DNA damage induced by arylamine compounds may participate in chemical carcinogenesis, in addition to DNA adduct formation.

PMID:
21196222
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers in Bioscience
    Loading ...
    Support Center