Send to

Choose Destination
Biotechnol J. 2010 Jul;5(7):739-50. doi: 10.1002/biot.201000124.

In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival.

Author information

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea.


Genome-scale metabolic models have been appearing with increasing frequency and have been employed in a wide range of biotechnological applications as well as in biological studies. With the metabolic model as a platform, engineering strategies have become more systematic and focused, unlike the random shotgun approach used in the past. Here we present the genome-scale metabolic model of the versatile Gram-negative bacterium Pseudomonas putida, which has gained widespread interest for various biotechnological applications. With the construction of the genome-scale metabolic model of P. putida KT2440, PpuMBEL1071, we investigated various characteristics of P. putida, such as its capacity for synthesizing polyhydroxyalkanoates (PHA) and degrading aromatics. Although P. putida has been characterized as a strict aerobic bacterium, the physiological characteristics required to achieve anaerobic survival were investigated. Through analysis of PpuMBEL1071, extended survival of P. putida under anaerobic stress was achieved by introducing the ackA gene from Pseudomonas aeruginosa and Escherichia coli.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center