Send to

Choose Destination
Cancer Res. 2009 Sep 1;69(17):6915-23. doi: 10.1158/0008-5472.CAN-09-0664.

Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts.

Author information

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0614, USA.


Sphingosine-1-phosphate is a potent sphingolipid mediator of diverse processes important for brain tumors, including cell growth, survival, migration, invasion, and angiogenesis. Sphingosine kinase 1 (SphK1), one of the two isoenzymes that produce sphingosine-1-phosphate, is up-regulated in glioblastoma and has been linked to poor prognosis in patients with glioblastoma multiforme (GBM). In the present study, we found that a potent isotype-specific SphK1 inhibitor, SK1-I, suppressed growth of LN229 and U373 glioblastoma cell lines and nonestablished human GBM6 cells. SK1-I also enhanced GBM cell death and inhibited their migration and invasion. SK1-I rapidly reduced phosphorylation of Akt but had no significant effect on activation of extracellular signal-regulated kinase 1/2, another important survival pathway for GBM. Inhibition of the concomitant activation of the c-Jun-NH(2)-kinase pathway induced by SK1-I attenuated death of GBM cells. Importantly, SK1-I markedly reduced the tumor growth rate of glioblastoma xenografts, inducing apoptosis and reducing tumor vascularization, and enhanced the survival of mice harboring LN229 intracranial tumors. Our results support the notion that SphK1 may be an important factor in GBM and suggest that an isozyme-specific inhibitor of SphK1 deserves consideration as a new therapeutic agent for this disease.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center