Format

Send to

Choose Destination
J Invest Dermatol. 2009 Oct;129(10):2435-42. doi: 10.1038/jid.2009.104. Epub 2009 Apr 23.

Matriptase-deficient mice exhibit ichthyotic skin with a selective shift in skin microbiota.

Author information

1
National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.

Abstract

Suppressor of tumorigenicity 14 (St14) encodes matriptase, a serine protease, which regulates processing of profilaggrin to filaggin in vivo. Here, we report that transgenic mice with 1% of wild-type St14 levels (St14(hypo/-)) display aberrant processing of profilaggrin and model human ichthyotic skin phenotypes. Scaling of the skin appears at 1 week of age with underlying epidermal acanthosis and orthohyperkeratosis as well as a CD4+ T-cell dermal infiltrate. Upregulation of antimicrobial peptides occurs when challenged by exposure to the postnatal environment. Direct genomic sequencing of bacterial 16S rRNA genes to query microbial diversity identifies a significant shift in both phylogeny and community structure between St14(hypo/-) mice and control littermates. St14(hypo/-) mice have a selective shift in resident skin microbiota with a decrease of the dominant genus of skin bacteria, Pseudomonas and an accompanying increase of Corynebacterium and Streptococcus. St14(hypo/-) mice provide early evidence that the cutaneous microbiome can be specifically altered by genetic state, which may play an important role in modulating skin disease.

PMID:
19387477
PMCID:
PMC2791707
DOI:
10.1038/jid.2009.104
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Secondary source ID, Grant support

Publication types

MeSH terms

Substances

Secondary source ID

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center