Format

Send to

Choose Destination
Nano Lett. 2008 Jul;8(7):1965-70. doi: 10.1021/nl0808684. Epub 2008 Jun 19.

Graphene oxidation: thickness-dependent etching and strong chemical doping.

Author information

1
Department of Chemistry, Columbia University, New York, New York 10027, USA.

Abstract

Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single-layer material where every atom is on the surface. Especially intriguing is the variety of rich chemical interactions shown by molecular oxygen with aromatic molecules. We find that O 2 etching kinetics vary strongly with the number of graphene layers in the sample. Three-layer-thick samples show etching similar to bulk natural graphite. Single-layer graphene reacts faster and shows random etch pits in contrast to natural graphite where nucleation occurs at point defects. In addition, basal plane oxygen species strongly hole dope graphene, with a Fermi level shift of approximately 0.5 eV. These oxygen species desorb partially in an Ar gas flow, or under irradiation by far UV light, and readsorb again in an O 2 atmosphere at room temperature. This strongly doped graphene is very different from "graphene oxide" made by mineral acid attack.

PMID:
18563942
DOI:
10.1021/nl0808684

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center