Format

Send to

Choose Destination
PLoS One. 2008 May 14;3(5):e2176. doi: 10.1371/journal.pone.0002176.

Efficient array-based identification of novel cardiac genes through differentiation of mouse ESCs.

Author information

1
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

Abstract

Remarkably, although cardiac disease accounts for the largest proportion of adult mortality and morbidity in the industrialized world, the genetic programs controlling early cardiogenesis are largely incompletely understood. To better understand this process, we set out to identify genes whose expression is enriched within early cardiac fated populations, obtaining the transcriptional signatures of mouse embryonic stem cells (mESCs) at defined intervals during their differentiation along a cardiac path. We compared the RNA profiles of cardiac precursors cells (CPCs) with time-matched non-CPCs and undifferentiated mESCs, using a transgenic mESC line harboring an Nkx2-5 cardiac-specific regulatory sequence driving green fluorescent protein (GFP) to facilitate selection of CPCs. We identify 176 transcripts that are significantly elevated in their abundance within CPCs compared with other assayed populations, predicting that they will likely play a role in cardiogenesis. Of note, approximately 24% (43/176) of the cardiogenic candidate transcripts have known roles in cardiac function or development. Importantly, we evaluated the biological relevance of a significant subset 31/133 (23%) of the remaining candidate genes by in situ hybridization at multiple time points during development (embryonic day, E7.5-9.5) and report that all were expressed in key cardiac structures during cardiogenesis. Furthermore 9/31, of which many were previously uncharacterized, were detected as early as the formation of the cardiac crescent. These data demonstrate the potential power of integrating genomic approaches with mESC differentiation to illuminate developmental processes, and provides a valuable resource that may be mined to further elucidate the genetic programs underlying cardiogenesis.

PMID:
18478100
PMCID:
PMC2364653
DOI:
10.1371/journal.pone.0002176
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center