Format

Send to

Choose Destination
J Virol. 2004 Oct;78(20):10953-9.

Enhanced expression of cell cycle regulatory genes in virus-specific memory CD8+ T cells.

Author information

1
Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, G211, Atlanta, GA 30322, USA.

Abstract

Unlike naive CD8+ T cells, antigen-experienced memory CD8+ T cells persist over time due to their unique ability to homeostatically proliferate. It was hypothesized that memory cells might differentially regulate the expression of genes that control the cell cycle to facilitate homeostatic proliferation. To test this, the expression levels of 96 different cell cycle regulatory genes were compared between transgenic naive and memory CD8+ T cells that specifically recognize the GP33-41 epitope of lymphocytic choriomeningitis virus (LCMV). It was discovered that relative to naive cells, memory cells overexpress several important genes that control the transition between G(1) and S phase. Some of these genes include those encoding cyclins D3, D2, B1, C, and H, cyclin-dependent kinases (cdk's) 4 and 6, the cdk inhibitors p16, p15, and p18, and other genes involved in protein degradation and DNA replication. Importantly, these differences were observed both in total populations of LCMV-specific naive and memory CD8+ cells and in LCMV-specific CD8+ T-cell populations that were in the G(1) phase of the cell cycle only. In addition, the expression differences between naive and memory cells were exaggerated following antigenic stimulation. The fact that memory cells are precharged with several of the major factors that are necessary for the G(1)- to-S-phase transition suggests they may require a lower threshold of stimulation to enter the cell cycle.

PMID:
15452215
PMCID:
PMC521836
DOI:
10.1128/JVI.78.20.10953-10959.2004
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center