Comparison of cathepsins K and S expression within the rheumatoid and osteoarthritic synovium

Arthritis Rheum. 2002 Mar;46(3):663-74. doi: 10.1002/art.10114.

Abstract

Objective: To determine and compare the expression of cathepsins K and S proteins in joints with rheumatoid arthritis (RA) and osteoarthritis (OA) and to determine the effect of interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF alpha) on the expression of cathepsin K in fibroblast-like synoviocytes.

Method: Expression and localization of cathepsins K and S were determined by immunohistochemistry in the synovium of 10 RA- and 8 OA-affected joints. Northern and Western blot analyses were performed to analyze cathepsin K and S expression in primary fibroblast-like synoviocyte cultures from RA and OA patients. The effect of IL-1 beta and TNF alpha on the expression and secretion of cathepsin K in primary cultures of synoviocytes was determined by real-time polymerase chain reaction and Western blot analysis. Staining of in situ activity was used to identify active cathepsin K enzyme in primary synovial fibroblast cultures.

Results: Cathepsin K and S protein expression was identified in the synovium from patients with RA and OA. Cathepsin K protein was localized in synovial fibroblasts, stromal multinucleated giant cells, and, to a lesser degree, in CD68+ macrophage-like synoviocytes. Of note is the expression of cathepsin K in synovial fibroblasts and mononuclear macrophage-like cells at sites of cartilage erosion in RA and in interdigitating cells of lymphocyte-rich areas. In contrast, cathepsin S expression was restricted to CD68+ macrophage-like synoviocytes, interdigitating cells, and endothelial cells of blood vessels. Cathepsin K protein expression in the interstitial areas and perivascular regions of RA-derived synovial specimens was 2-5 times higher than in OA samples (P < 0.001), whereas the expression of cathepsin S did not significantly differ in these diseases. Cathepsin K expression levels in normal synovium were low and restricted to fibroblast-like cells. Of note, cathepsin K also was expressed in repairing fibrocartilage in 1 OA specimen. Primary cell cultures of RA- and OA-derived synovial fibroblasts expressed comparable amounts of cathepsin K at the transcript and protein levels. Both cell cultures secreted mature cathepsin K as well as procathepsin K, and expressed active cathepsin K in cytosolic vesicles. In contrast, neither RA- nor OA-derived fibroblasts expressed detectable levels of cathepsin S. IL-1 beta and TNF alpha stimulated the transcript (7-8-fold) and protein expression (2-fold) of cathepsin K (P < 0.05) in primary synovial fibroblast cultures, without differences in expression between RA- and OA-derived synovial fibroblasts.

Conclusion: The presence of cathepsin K polypeptide in synovial fibroblasts and macrophage-like cells in normal, OA, and RA synovia suggests a constitutive expression of this protease and a role in synovial remodeling. The comparable increase in cathepsin K expression after stimulation of RA- and OA-derived synovial fibroblasts with IL-1 beta and TNF alpha further suggests that the expression of cathepsin K is independent of cellular alterations leading to the invasive phenotype of RA-synovial fibroblasts. However, the overexpression of cathepsin K in RA synovia due to an increase in the number of cathepsin K-expressing cells identifies this enzyme as a candidate protease for the pathologic degradation of articular cartilage. Cathepsin S expression in macrophage-like synoviocytes suggests dual activity in antigen presentation and matrix degradation in the inflamed synovia.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Arthritis, Rheumatoid / metabolism*
  • Arthritis, Rheumatoid / pathology
  • Cathepsin K
  • Cathepsins / genetics
  • Cathepsins / metabolism*
  • Cells, Cultured
  • Endopeptidases / metabolism
  • Female
  • Humans
  • Interleukin-1 / pharmacology
  • Joints / metabolism
  • Male
  • Middle Aged
  • Osteoarthritis / metabolism*
  • Osteoarthritis / pathology
  • RNA, Messenger / metabolism
  • Synovial Membrane / drug effects
  • Synovial Membrane / metabolism*
  • Synovial Membrane / pathology
  • Tumor Necrosis Factor-alpha / pharmacology

Substances

  • Interleukin-1
  • RNA, Messenger
  • Tumor Necrosis Factor-alpha
  • Cathepsins
  • Endopeptidases
  • cathepsin S
  • CTSK protein, human
  • Cathepsin K