Distinct roles for visceral endoderm during embryonic mouse development

Int J Dev Biol. 1999 May;43(3):183-205.

Abstract

The murine visceral endoderm is an extraembryonic cell layer that appears prior to gastrulation and performs critical functions during embryogenesis. The traditional role ascribed to the visceral endoderm entails nutrient uptake and transport. Besides synthesizing a number of specialized proteins that facilitate uptake, digestion, and secretion of nutrients, the extraembryonic visceral endoderm coordinates blood cell differentiation and vessel formation in the adjoining mesoderm, thereby facilitating efficient exchange of nutrients and gases between the mother and embryo. Recent studies suggest that in addition to this nutrient exchange function the visceral endoderm overlying the egg cylinder stage embryo plays an active role in guiding early development. Cells in the anterior visceral endoderm function as an early organizer. Prior to formation of the primitive streak, these cells express specific gene products that specify the fate of underlying embryonic tissues. In this review we highlight recent investigations demonstrating this dual role for visceral endoderm as a provider of both nutrients and developmental cues for the early embryo.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Differentiation / physiology
  • Embryonic and Fetal Development*
  • Endoderm* / cytology
  • Endoderm* / physiology
  • Gene Expression Regulation, Developmental / physiology
  • Mice
  • Signal Transduction / physiology