Send to

Choose Destination
Med Sci Sports Exerc. 2019 Jan 25. doi: 10.1249/MSS.0000000000001903. [Epub ahead of print]

Machine Learning in Modeling High School Sport Concussion Symptom Resolve.

Author information

SIVOTEC Analytics, Boca Raton, FL.
Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL.
Nemours Children's Hospital, Division of Neurosurgery, Orlando, FL.
Kerlan-Jobe Center for Sports Neurology, Los Angeles, CA.
Datalys Center for Sports Injury Research and Prevention, Inc., Indianapolis, IN.



Concussion prevalence in Sport is well-recognized; so too is the challenge of clinical and return-to-play management for an injury with an inherent indeterminant time course of resolve. Clear, valid insight to the anticipated resolution time could assist in planning treatment intervention.


This study implemented a supervised machine learning-based approach in modeling estimated symptom resolve time in high school athletes who incurred a concussion during sport activity.


We examined the efficacy of 10 classification algorithms using machine learning for prediction of symptom resolution time (within seven, fourteen, or twenty-eight days), with a dataset representing three years of concussions suffered by high school student-athletes in football (most concussion incidents) and other contact sports.


The most prevalent sport-related concussion reported symptom was headache (94.9%), followed by dizziness (74.3%) and difficulty concentrating (61.1%). For all three category thresholds of predicted symptom resolution time, single-factor ANOVAs revealed statistically significant performance differences across the ten classification models for all learners at a 95% confidence level (P=0.000). Naïve Bayes and Random Forest with either 100 or 500 trees were the top-performing learners with an area under the ROC curve performance ranging between 0.666 and 0.742 (0.0-1.0 scale).


Considering the limitations of these data specific to symptom presentation and resolve, supervised machine learning demonstrated efficacy, while warranting further exploration, in developing symptom-based prediction models for practical estimation of sport-related concussion recovery in enhancing clinical decision support.

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center