Format

Send to

Choose Destination
Neurology. 2018 May 15;90(20):e1780-e1788. doi: 10.1212/WNL.0000000000005518. Epub 2018 Apr 13.

Neurofilament light and tau as blood biomarkers for sports-related concussion.

Author information

1
From the Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry (P.S., K.B., H.Z.), the Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (P.S.), Luleå University of Technology; Department of Clinical Sciences (Y.T.), Skåne University Hospital, Lund University, Sweden; Department of Neurology (N.M.), Washington University School of Medicine, St. Louis, MO; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square; and UK Dementia Research Institute (H.Z.), London. pashtun.shahim@gu.se.
2
From the Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry (P.S., K.B., H.Z.), the Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (P.S., K.B., H.Z.), Sahlgrenska University Hospital, Mölndal; Division of Medical Sciences, Department of Health Sciences (P.S.), Luleå University of Technology; Department of Clinical Sciences (Y.T.), Skåne University Hospital, Lund University, Sweden; Department of Neurology (N.M.), Washington University School of Medicine, St. Louis, MO; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square; and UK Dementia Research Institute (H.Z.), London.

Abstract

OBJECTIVE:

To compare neurofilament light (NfL) and tau as blood-based biomarkers for acute sports-related concussion (SRC) and determine whether their concentrations at different time points after the injury are associated with prolonged time to return to play (RTP).

METHODS:

A total of 288 professional hockey players were followed longitudinally from September 1, 2012, to April 30, 2015. Data collection and biomarker analyses were conducted between 2015 and 2017. Associations were tested between blood concentrations of NfL and tau, and RTP time. Serum concentrations of S100B and neuron-specific enolase (NSE) were also measured for comparison.

RESULTS:

Of 288 players, 105 sustained an SRC. Of these, 87 underwent blood sampling 1, 12, 36, and 144 hours after SRC and at the RTP time point. Serum NfL concentrations 1, 12, 36, and 144 hours after SRC were related to prolonged RTP time, and could separate players with RTP >10 days from those with RTP ≤10 days (area under the receiver operating characteristic curve [AUROC] 0.82). Also, serum NfL 144 hours after SRC discriminated players who resigned from the game due to persistent postconcussion symptoms (PCS) from those who returned to play (AUROC 0.89). Plasma tau 1 hour after SRC was related to RTP but less strongly than NfL, while S100B and NSE showed no such associations.

CONCLUSION:

Serum NfL outperformed tau, S100B, and NSE as a biomarker for SRC. From a clinical standpoint, serum NfL may be useful to identify individuals at risk of prolonged PCS, and may aid in biomarker-informed decisions with regard to when RTP should be considered.

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center