Send to

Choose Destination
Radiology. 2018 Dec 18:181134. doi: 10.1148/radiol.2018181134. [Epub ahead of print]

Monitoring Fatty Liver Disease with MRI Following Bariatric Surgery: A Prospective, Dual-Center Study.

Author information

From the Departments of Radiology (B.D.P., C.N.W., A.M., N.S.A., S.B.R.), Medical Physics (S.B.R.), Medicine (S.B.R.), Emergency Medicine (S.B.R.), and General Surgery (L.M.F., J.A.G.), University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, 600 Highland Ave, Madison, WI 53792-3252; Madison Radiologists, SC, Madison, Wis (B.D.P.); Department of General Surgery, William S. Middleton Memorial Veterans Hospital, Madison, Wis (L.M.F.); Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tenn (N.S.A.); Departments of Radiology, Liver Imaging Group (A.S., Y.C., J.H., C.B.S.), Pediatrics, Section of Gastroenterology (J.B.S.), General Surgery (G.J., S.H.), and Computational and Applied Statistics Laboratory (T.W., A.C.G.), University of California, San Diego, Calif; and Department of Surgery, Virginia Commonwealth University, Richmond, Va (G.M.C.).


Purpose To longitudinally monitor liver fat before and after bariatric surgery by using quantitative chemical shift-encoded (CSE) MRI and to compare with changes in body mass index (BMI), weight, and waist circumference (WC). Materials and Methods For this prospective study, which was approved by the internal review board, a total of 126 participants with obesity who were undergoing evaluation for bariatric surgery with preoperative very low calorie diet (VLCD) were recruited from June 27, 2010, through May 5, 2015. Written informed consent was obtained from all participants. Participants underwent CSE MRI measuring liver proton density fat fraction (PDFF) before VLCD (2-3 weeks before surgery), after VLCD (1-3 days before surgery), and 1, 3, and 6-10 months following surgery. Linear regression was used to estimate rates of change of PDFF (ΔPDFF) and body anthropometrics. Initial PDFF (PDFF0), initial anthropometrics, and anthropometric rates of change were evaluated as predictors of ΔPDFF. Mixed-effects regression was used to estimate time to normalization of PDFF. Results Fifty participants (mean age, 51.0 years; age range, 27-70 years), including 43 women (mean age, 50.8 years; age range, 27-70 years) and seven men (mean age, 51.7 years; age range, 36-62 years), with mean PDFF0 ± standard deviation of 18.1% ± 8.6 and mean BMI0 of 44.9 kg/m2 ± 6.5 completed the study. By 6-10 months following surgery, mean PDFF decreased to 4.9% ± 3.4 and mean BMI decreased to 34.5 kg/m2 ± 5.4. Mean estimated time to PDFF normalization was 22.5 weeks ± 11.5. PDFF0 was the only strong predictor for both ΔPDFF and time to PDFF normalization. No body anthropometric correlated with either outcome. Conclusion Average liver proton density fat fraction (PDFF) decreased to normal (< 5%) by 6-10 months following surgery, with mean time to normalization of approximately 5 months. Initial PDFF was a strong predictor of both rate of change of PDFF and time to normalization. Body anthropometrics did not predict either outcome. Online supplemental material is available for this article.


Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center