Format

Send to

Choose Destination
IEEE J Transl Eng Health Med. 2017 Sep 15;5:2200111. doi: 10.1109/JTEHM.2017.2752152. eCollection 2017.

Detecting Dementia Through Interactive Computer Avatars.

Author information

1
Graduate School of Information ScienceNara Institute of Science and Technology.
2
Health and Counseling CenterOsaka University.
3
Graduate School of EngineeringToyota Technological Institute.
4
Department of PsychiatryGraduate School of MedicineOsaka University.

Abstract

This paper proposes a new approach to automatically detect dementia. Even though some works have detected dementia from speech and language attributes, most have applied detection using picture descriptions, narratives, and cognitive tasks. In this paper, we propose a new computer avatar with spoken dialog functionalities that produces spoken queries based on the mini-mental state examination, the Wechsler memory scale-revised, and other related neuropsychological questions. We recorded the interactive data of spoken dialogues from 29 participants (14 dementia and 15 healthy controls) and extracted various audiovisual features. We tried to predict dementia using audiovisual features and two machine learning algorithms (support vector machines and logistic regression). Here, we show that the support vector machines outperformed logistic regression, and by using the extracted features they classified the participants into two groups with 0.93 detection performance, as measured by the areas under the receiver operating characteristic curve. We also newly identified some contributing features, e.g., gap before speaking, the variations of fundamental frequency, voice quality, and the ratio of smiling. We concluded that our system has the potential to detect dementia through spoken dialog systems and that the system can assist health care workers. In addition, these findings could help medical personnel detect signs of dementia.

KEYWORDS:

Alzheimer’s disease; Dementia; MMSE; computer avatars; spoken dialogue

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center